# R Dataset / Package DAAG / bomsoi2001

Attachment | Size |
---|---|

dataset-70231.csv | 7.86 KB |

Dataset Help |
---|

On this Picostat.com statistics page, you will find information about the bomsoi2001 data set which pertains to Southern Oscillation Index Data. The bomsoi2001 data set is found in the DAAG R package. You can load the bomsoi2001 data set in R by issuing the following command at the console data("bomsoi2001"). This will load the data into a variable called bomsoi2001. If R says the bomsoi2001 data set is not found, you can try installing the package by issuing this command install.packages("DAAG") and then attempt to reload the data. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the bomsoi2001 R data set. The size of this file is about 8,046 bytes. |

Documentation |
---|

## Southern Oscillation Index Data## DescriptionThe Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Annual SOI and Australian rainfall data, for the years 1900-2001, are given. Australia's annual mean rainfall is an area-weighted average of the total annual precipitation at approximately 370 rainfall stations around the country. ## Usagebomsoi2001 ## FormatThis data frame contains the following columns: - Year
a numeric vector - Jan
average January SOI values for each year - Feb
average February SOI values for each year - Mar
average March SOI values for each year - Apr
average April SOI values for each year - May
average May SOI values for each year - Jun
average June SOI values for each year - Jul
average July SOI values for each year - Aug
average August SOI values for each year - Sep
average September SOI values for each year - Oct
average October SOI values for each year - Nov
average November SOI values for each year - Dec
average December SOI values for each year - SOI
a numeric vector consisting of average annual SOI values - avrain
a numeric vector consisting of a weighted average annual rainfall at a large number of Australian sites
## SourceAustralian Bureau of Meteorology web pages: http://www.bom.gov.au/climate/change/rain02.txt and http://www.bom.gov.au/climate/current/soihtm1.shtml ## ReferencesNicholls, N., Lavery, B., Frederiksen, C.\ and Drosdowsky, W. 1996. Recent apparent changes in relationships between the El Nino – southern oscillation and Australian rainfall and temperature. Geophysical Research Letters 23: 3357-3360. ## See Also
## Examplesbomsoi <- bomsoi2001 plot(ts(bomsoi[, 15:14], start=1900), panel=function(y,...)panel.smooth(1900:2001, y,...)) pause()# Check for skewness by comparing the normal probability plots for # different a, e.g. par(mfrow = c(2,3)) for (a in c(50, 100, 150, 200, 250, 300)) qqnorm(log(bomsoi[, "avrain"] - a)) # a = 250 leads to a nearly linear plotpause()par(mfrow = c(1,1)) plot(bomsoi$SOI, log(bomsoi$avrain - 250), xlab = "SOI", ylab = "log(avrain = 250)") lines(lowess(bomsoi$SOI)$y, lowess(log(bomsoi$avrain - 250))$y, lwd=2) # NB: separate lowess fits against time lines(lowess(bomsoi$SOI, log(bomsoi$avrain - 250))) pause()xbomsoi <- with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33)) xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y rainpos <- pretty(bomsoi$avrain, 5) with(xbomsoi, {plot(cuberootRain ~ SOI, xlab = "SOI", ylab = "Rainfall (cube root scale)", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) ## Relative changes in the two trend curves lines(lowess(cuberootRain ~ SOI)) lines(lowess(trendRain ~ trendSOI), lwd=2) }) pause()xbomsoi$detrendRain <- with(xbomsoi, cuberootRain - trendRain + mean(trendRain)) xbomsoi$detrendSOI <- with(xbomsoi, SOI - trendSOI + mean(trendSOI)) oldpar <- par(mfrow=c(1,2), pty="s") plot(cuberootRain ~ SOI, data = xbomsoi, ylab = "Rainfall (cube root scale)", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) with(xbomsoi, lines(lowess(cuberootRain ~ SOI))) plot(detrendRain ~ detrendSOI, data = xbomsoi, xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI))) pause()par(oldpar) attach(xbomsoi) xbomsoi.ma0 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,0)) # ordinary regression modelxbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,12)) # regression with MA(12) errors -- all 12 MA parameters are estimated xbomsoi.ma12 pause()xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI, seasonal=list(order=c(0,0,1), period=12)) # regression with seasonal MA(1) (lag 12) errors -- only 1 MA parameter # is estimated xbomsoi.ma12s pause()xbomsoi.maSel <- arima(x = detrendRain, order = c(0, 0, 12), xreg = detrendSOI, fixed = c(0, 0, 0, NA, rep(0, 4), NA, 0, NA, NA, NA, NA), transform.pars=FALSE) # error term is MA(12) with fixed 0's at lags 1, 2, 3, 5, 6, 7, 8, 10 # NA's are used to designate coefficients that still need to be estimated # transform.pars is set to FALSE, so that MA coefficients are not # transformed (see help(arima))detach(xbomsoi) pause()Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)), type="Ljung-Box", lag=20)pause()attach(xbomsoi) xbomsoi2.maSel <- arima(x = detrendRain, order = c(0, 0, 12), xreg = poly(detrendSOI,2), fixed = c(0, 0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)), transform.pars=FALSE) xbomsoi2.maSel qqnorm(resid(xbomsoi.maSel, type="normalized")) detach(xbomsoi) -- Dataset imported from https://www.r-project.org. |

Curated Data | File Size |
---|---|

OpenIntro Statistics Dataset - yrbss_samp | 7.62 KB |

OpenIntro Statistics Dataset - yrbss | 1.03 MB |

OpenIntro Statistics Dataset - yawn | 861 bytes |

OpenIntro Statistics Dataset - xom | 4.95 KB |

OpenIntro Statistics Dataset - winery_cars | 489 bytes |

#### Pagination

All Public Datasets | File Size |
---|---|

PSID | |

wage1 | 328 bytes |

OpenIntro Statistics Dataset - yrbss_samp | 7.62 KB |

OpenIntro Statistics Dataset - yrbss | 1.03 MB |

OpenIntro Statistics Dataset - yawn | 861 bytes |

#### Pagination

R Output | Date |
---|---|

Picostat Output - Arithmetic Mean | Jun 19, 2020 |

Picostat Output - Pie chart For Contingency Table | Jun 19, 2020 |

Recent Queries | App/Dataset | By | Date |
---|---|---|---|

Picostat Output - Numerical Summaries | R Dataset / Package datasets / quakes | wicetram | October 24, 2020 - 3:20 PM |

Picostat Output - Visual Summaries | R Dataset / Package datasets / quakes | wicetram | October 24, 2020 - 3:17 PM |

Picostat Output - Visual Summaries | R Dataset / Package datasets / quakes | wicetram | October 24, 2020 - 3:15 PM |

Picostat Output - Cumulative Frequency Histogram | R Dataset / Package datasets / quakes | wicetram | October 24, 2020 - 3:12 PM |

Picostat Output - Boxplot | R Dataset / Package datasets / quakes | wicetram | October 24, 2020 - 3:12 PM |