R Dataset / Package Ecdat / nkill.byCountryYr

How To Create a Barplot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Stacked Barplot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Pie Chart

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Compute the Mean

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Plot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How to Compute the Median

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Boxplot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Correlation Coefficient

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Cumulative Frequency Histogram

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Dotplot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Hollow Histogram

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Numerical Summaries

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Pie Chart

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Plot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Ratio

Regression

Stem and Leaf Plots

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Visual Summaries

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Embed
<iframe src="https://embed.picostat.com/r-dataset-package-ecdat-nkillbycountryyr.html" frameBorder="0" width="100%" height="307px" />
Attachment Size
dataset-94073.csv 22.27 KB
Dataset License
GNU General Public License v2.0
Documentation License
GNU General Public License v2.0
Documentation

On this Picostat.com statistics page, you will find information about the nkill.byCountryYr data set which pertains to Global Terrorism Database yearly summaries. The nkill.byCountryYr data set is found in the Ecdat R package. Try to load the nkill.byCountryYr data set in R by issuing the following command at the console data("nkill.byCountryYr"). This may load the data into a variable called nkill.byCountryYr. If R says the nkill.byCountryYr data set is not found, you can try installing the package by issuing this command install.packages("Ecdat") and then attempt to reload the data with library("Ecdat") followed by data("nkill.byCountryYr"). Perhaps strangley, if R gives you no output after entering a command, it means the command succeeded. If it succeeded you can see the data by typing nkill.byCountryYr at the command-line which should display the entire dataset.

If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the nkill.byCountryYr R data set. The size of this file is about 22,806 bytes.


Global Terrorism Database yearly summaries

Description

The Global Terrorism Database (GTD) "is a database of incidents of terrorism from 1970 onward". Through 2015, this database contains information on 141,966 incidents.

terrorism provides a few summary statistics along with an ordered factor methodology, which Pape et al. insisted is necessary, because an increase of over 70 percent in suicide terrorism between 2007 and 2013 is best explained by a methodology change in GTD that occurred on 2011-11-01; Pape's own Suicide Attack Database showed a 19 percent decrease over the same period.

Usage

  data(terrorism)
  data(incidents.byCountryYr)
  data(nkill.byCountryYr)

Format

incidents.byCountryYr and nkill.byCountryYr are matrices giving the numbes of incidents and numbers of deaths by year and by country for 206 countries and for all years between 1970 and 2015 except for 1993, for which the raw data were lost.

NOTE: For nkill.byCountryYr and for terrorism[c('nkill', 'nkill.us')], NAs in GTD were treated as 0. Thus the actual number of deaths were likely higher, unless this was more than offset by incidents being classified as terrorism, when they should not have been.

terrorism is a data.frame containing the following:

year

integer year, 1970:2014.

methodology

an ordered factor giving the methodology / organization responsible for the data collection for most of the given year. The Pinkerton Global Intelligence Service (PGIS) managed data collection from 1970-01-01 to 1997-12-31. The Center for Terrorism and Intelligence Studies (CETIS) managed the project from 1998-01-01 to 2008-03-31. The Institute for the Study of Violent Groups (ISVG) carried the project from 2008-04-01 to 2011-10-31. The National Consortium for the Study of Terrorism and Responses to Terrorism (START) has managed data collection since 2011-11-01. For this variable, partial years are ignored, so methodology = CEDIS for 1998:2007, ISVG for 2008:2011, and START for 2012:2014.

method

a character vector consisting of the first character of the levels of methodology:

c('p', 'c', 'i', 's')

incidents

integer number of incidents identified each year.

NOTE: sum(terrorism[["incidents"]]) = 146920 = 141966 in the GTD database plus 4954 for 1993, for which the incident-level data were lost.

incidents.us

integer number of incidents identified each year with country_txt = "United States".

suicide

integer number of incidents classified as "suicide" by GTD variable suicide = 1. For 2007, this is 359, the number reported by Pape et al. For 2013, it is 624, which is 5 more than the 619 mentioned by Pape et al. Without checking with the SMART project administrators, one might suspect that 5 more suicide incidents from 2013 were found after the data Pape et al. analyzed but before the data used for this analysis.

suicide.us

Number of suicide incidents by year with country_txt = "United States".

nkill

number of confirmed fatalities for incidents in the given year, including attackers = sum(nkill, na.rm=TRUE) in the GTD incident data.

NOTE: nkill in the GTD incident data includes both perpetrators and victims when both are available. It includes one when only one is available and is NA when neither is available. However, in most cases, we might expect that the more spectacular and lethal incidents would likely be more accurately reported. To the exent that this is true, it means that when numbers are missing, they are usually zero or small. This further suggests that the summary numbers recorded here probably represent a slight but not substantive undercount.

nkill.us

number of U.S. citizens who died as a result of incidents for that year = sum(nkill.us, na.rm=TRUE) in the GTD incident data. (This is subject to the same likely modest undercount discussed with nkill.)

nwound

number of people wounded. (This is subject to the same likely modest undercount discussed with nkill.)

nwound.us

Number of U.S. citizens wounded in terrorist incidents for that year = sum(nwound.us, na.rm=TRUE) in the GTD incident data. (This is subject to the same likely modest undercount discussed with nkill.)

pNA.nkill, pNA.nkill.us, pNA.nwound, pNA.nwound.us

proportion of observations by year with missing values. These numbers are higher for the early data than more recent numbers. This is particularly true for nkill.us and nwound.us, which exceed 90 percent for most of the period with methodology = 'PGIS', prior to 1998.

worldPopulation, USpopulation

Estimated de facto population in thousands living in the world and in the US as of 1 July of the year indicated, according to the Population Division of the Department of Economic and Social Affairs of the United Nations; see "Sources" below.

worldDeathRate, USdeathRate

Crude death rate (deaths per 1,000 population) worldwide and in the US, according to the World Bank; see "Sources" below. This World Bank data set includes USdeathRate for each year from 1900 to 2014.

The WorldDeathRate here were read manually from a plot on that web page, except for the the number for 2015, which was estimated as a reduction of 0.73 percent from 2014, which was the average rate of decline (ratio of two successive years) for 1990 to 2014. The same method was used to estimate the USdeathRate for 2015 as the same as for 2014.

NOTE: USdeathRate is to two significant digits only, unlike WorldDeathRate, which has four significant digits.

worldDeaths, USdeaths

number of deaths by year in the world and US

worldDeaths = worldPopulation * worldDeathRate.

USdeaths were computed by summing across age groups in "Deaths_5x1.txt" for the United States, downloaded from http://www.mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=1 from the Human Mortality Database; see sources below.

kill.pmp, kill.pmp.us

terrorism deaths per million population worldwide and in the US =

0.001 * nkill / worldPopulation

pkill, pkill.us

terrorism deaths as a proportion of total deaths worldwide and in the US

pkill = nkill / worldDeaths

pkill.us = nkill.us / USdeaths

Details

As noted with the "description" above, Pape et al. noted that the GTD reported an increase in suicide terrorism of over 70 percent between 2007 and 2013, while their Suicide Attack Database showed a 19 percent decrease over the same period. Pape et al. insisted that the most likely explanation for this difference is the change in the organization responsible for managing that data collection from ISVG to START.

If the issue is restricted to how incidents are classified as "suicide terrorism", this concern does not affect the other variables in this summary.

However, if it also impacts what incidents are classified as "terrorism", it suggests larger problems.

Source

The Global Terrorism Database maintained by the National Consortium for the Study of Terrorism and Responses to Terrorism (START, 2015), downloaded 2015-11-28.

The world and US population figures came from "Total Population - Both Sexes", World Population Prospects 2015, published by the Population Division of the Department of Economic and Social Affairs of the United Nations, accessed 2016-09-05.

The World and US death rates came from the World Bank, accessed 2016-09-05.

Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany).

References

Robert Pape, Keven Ruby, Vincent Bauer and Gentry Jenkins, "How to fix the flaws in the Global Terrorism Database and why it matters", The Washington Post, August 11, 2014 (accessed 2016-01-09).

Examples

data(terrorism)
# plot deaths per million population plot(kill.pmp~year, terrorism, 
     pch=method, type='b')
plot(kill.pmp.us~year, terrorism, 
     pch=method, type='b', 
     log='y', las=1)
     
# terrorism as parts per 10,000 
# of all deaths plot(pkill*1e4~year, terrorism, 
     pch=method, type='b', 
     las=1)
plot(pkill.us*1e4~year, terrorism, 
     pch=method, type='b', 
     log='y', las=1)
     
# plot number of incidents, number killed, 
# and proportion NAplot(incidents~year, terrorism, type='b', 
      pch=method)plot(nkill.us~year, terrorism, type='b', 
      pch=method)
plot(nkill.us~year, terrorism, type='b', 
      pch=method, log='y')plot(pNA.nkill.us~year, terrorism, type='b', 
      pch=method)
abline(v=1997.5, lty='dotted', col='red')
# by country by year
data(incidents.byCountryYr)
data(nkill.byCountryYr)yr <- as.integer(colnames(
  incidents.byCountryYr))
str(maxDeaths <- apply(nkill.byCountryYr, 
                       1, max) )
str(omax <- order(maxDeaths, decreasing=TRUE))
head(maxDeaths[omax], 8)
tolower(substring( 
  names(maxDeaths[omax[1:8]]), 1, 2))
pch. <- c('i', 'g', 'f', 'l', 
          's', 'c', 'u', 'p')
cols <- 1:4matplot(yr, sqrt(t(
  nkill.byCountryYr[omax[1:8], ])),
  type='b', pch=pch., axes=FALSE, 
  ylab='(square root scale)   ', xlab='', 
  col=cols,
  main='number of terrorism deaths\nby country') 
axis(1)
(max.nk <- max(nkill.byCountryYr[omax[1:8], ]))
i.nk <- c(1, 100, 1000, 3000, 
          5000, 7000, 10000)
cbind(i.nk, sqrt(i.nk))
axis(2, sqrt(i.nk), i.nk, las=1)
ip <- paste(pch., names(maxDeaths[omax[1:8]]))
legend('topleft', ip, cex=.55, 
       col=cols, text.col=cols)
--

Dataset imported from https://www.r-project.org.

Picostat Manual
How To Register With a Username
  1. Go to the user registration page.
  2. Enter a username and email address into the form.
  3. Answer the ReCaptcha (this is used to prevent spam).
  4. Click Submit.
  5. Click the link that was sent to the email address you registered with.
  6. Clicking the link will open another page on Picostat where you can select a password.
  7. Click Save and enter any profile details you wish to enter.
How To Register With Google Single Sign On (SSO)
  1. Go to the user login page.
  2. Click the Google button that says "Sign in with Google". This will redirect you to a page controlled by Google.
  3. Enter your Google username and password if you are not already authenticated.
  4. Review the Picostat Terms of Use and Privacy Policy. Then submit the Google form if you accept the terms.
  5. Google will redirect you back to Picostat with your new account created and you will be logged in.
  6. Enter any profile details you wish to share.
How To Login With a Username and Password
  1. Go to the user login page.
  2. Enter your username and password that you registered with.
  3. Click "Login". You will be redirected to your user homepage authenticated.
How To Login With Google Single Sign On (SSO)
  1. Go to the user login page.
  2. Click the button that says "Sign in with Google".
  3. If you already registered with Picostat via Google SSO, you will be redirected to your user homepage authenticated.
How To Import a Dataset
  1. Create a Picostat account or login with your existing picostat account (see above).
  2. Go to the dataset import page.
  3. Select a license for the dataset. The default is "No License" but allows Picostat to host a copy of the dataset as per the privacy policy. You may wish to uncheck the "Public" option if you do not wish to share your dataset with others. R Datasets that come by downloading R have a GNU General Public License v3.0 which may also be selected from the Picostat dropdown.
  4. Enter a title for the dataset
  5. Choose a dataset input methods. Available options include:
    • Random data - this populates your dataset with random numbers between 0 and 100. You can specify the number of rows and columns for the random dataset.
    • CSV, TSV or TXT file - you will have the option upload a file within the current file size limit and also specify the header and whether or not the dataset is a contingency table. With contingency tables, the first column becomes a label for the rows. Currently with Picostat, there is limited support for contingency tables. Choose "Yes" to the Header option if the first line of the data contains titles for the rows. Also choose the Separator for the dataset. A separator is what breaks the data up. In some cases, a comma would separate data values in a row. You will also have the option to add documentation in the form keyboarded text and also uploaded documentation attachments. You can also specify a license for the documentation.
    • Copy and Paste. This selection contains many of the same fields as importing a file with an additional textarea to copy and paste data to.
    • Empty dataset. Start with a blank dataset and manually add data with the Picostat dataset editor.
    • Excel file - Choose this option if you would like to convert your Excel spreadsheet to a Picostat dataset. With this selection, you will have the option to specify whether to use the first row in the Excel file as column names. If you would like to choose a specific sheet to use, you can also specify with entering its name in the text input.
    • sas7bdat file - SAS is a powerful statistical software package that has its own proprietary file format. Choose this option if you are importing a SAS file.
    • SPSS sav file - SPSS is a statistical package owned by IBM. You can import SPSS files by choosing this option.
  6. Choose whether or not the dataset contains a header. Some of the dataset input methods allow you to specify whether or not a Header exists on the file. Sometimes dataset files contain a Header as the first row which names the columns. If you choose "Yes" to this, the first row in the dataset will become column headers.
  7. You can also add documentation and specify a documentation license. This can be used to help explain your dataset to those unfamiliar with it.
  8. Choose whether or not to upload an supporting attachments.
  9. Pass the captcha. To prevent spam submissions, Picostat has a captcha which is used to prevent automated submissions by bots.
  10. Choose a privacy setting for the dataset. You can also specify whether or not the dataset is Public. If you uncheck this setting, only you and the Picostat administrator will be able to view the dataset.
  11. Submit the form. Once the form is validated, you will be redirected to the dataset homepage where you can choose to edit or perform statistical operations on the dataset.
How To Perform Statistical Analysis with Picostat
  1. Go to any dataset homepage. You can get a full list at the dashboard.
  2. Near the top of the page there will be two drop downs. One for analysis and one for education. Here we will choose Analyis. Choose from one of the following:
    • Numerical Summaries - Here you can get the:
      1. Arithmetic mean
      2. Median
      3. Quartiles
      4. Minimum and Maximum
      5. Stem-and-leaf plot
      6. Standard deviation and Variance
      7. IQR
      8. Cumulative frequencies
    • Plot - a plot of two columns on the cartesian coordinate system
    • Boxplot - a Boxplot (box-and-whisker plot) of a column.
    • Correlation Coefficient - Compute the correlation coefficient between two columns.
    • Cumulative Frequency Histogram - Display a cumulative frequency histogram
    • Dotplot
    • Hollow Histogram - Plot two columns on the same histogram with a different color for each column.
    • Pie Chart
    • Regression - Perform a simple linear regression and compute the p-value and regression line. Also plots the data with the regression line.
    • Stem and Leaf Plots - Plot a one or two-sided stem-and-leaf plot from one or two columns respectively.
    • Visual Summaries - plots the following:
      1. Frequency Histogram
      2. Relative Frequency Histogram
      3. Cumulative Frequency Histogram
      4. Boxplot (Box-and-whisker plot)
      5. Dotplot
  3. PDF - Check this box if you want to download a PDF of the output from the statistical analysis application.
  4. HTML - Check this box if you want a link to the HTML page created with the application.
  5. R File - Check this box if you want a link to download the R commands used to generate output from this statistical application. You should be able to copy the commands verbatim into R Studio or R to recreate the analysis.
How To Use Educational Applications with Picostat
  1. Go to any dataset homepage. You can get a full list at the dashboard.
  2. Near the top of the page there will be two drop downs. One for analysis and one for education. Here we will choose Education. Choose from one of the following:
    • How To Create a Barplot - This will show you how to create a bar chart after selecting a column with the mouse.
    • How To Create a Stacked Barplot - This application will show you how to create a stacked bar plot from a column vector.
    • How To Create a Pie Chart - This application will show you how to create a pie chart from a column of data
    • How To Compute the Mean - This application will show you how to compute the mean from a column vector
    • How To Create a Plot - This app will show you how to plot two columns in the cartesian coordinate system.
    • How To Compute the Media - This statisistical app will show you how to compute the median from a column vector.
  3. PDF - Check this box if you want to download a PDF of the output from the education application.
  4. HTML - Check this box if you want a link to the HTML page created with the application.
Recent Queries For This Dataset

No queries made on this dataset yet.

Title Authored on Content type
R Dataset / Package datasets / sunspot.year March 9, 2018 - 1:06 PM Dataset
R Dataset / Package datasets / airmiles March 9, 2018 - 1:06 PM Dataset
R Dataset / Package Stat2Data / SampleFG March 9, 2018 - 1:06 PM Dataset
OpenIntro Statistics Dataset - toy_anova August 9, 2020 - 2:38 PM Dataset
swiss February 26, 2017 - 11:28 AM Dataset
Title Link
Quiz: Brain To Body Weight Ratio

Requires login.

Quiz: Analysis of the Starbucks menu

Requires login.