R Dataset / Package HistData / Nightingale

How To Create a Barplot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Stacked Barplot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Pie Chart

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Compute the Mean

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Plot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How to Compute the Median

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Boxplot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Correlation Coefficient

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Cumulative Frequency Histogram

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Dotplot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Hollow Histogram

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Numerical Summaries

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Pie Chart

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Plot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Regression

Stem and Leaf Plots

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Visual Summaries

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Embed
<iframe src="https://embed.picostat.com/r-dataset-package-histdata-nightingale.html" frameBorder="0" width="100%" height="307px" />
Attachment Size
dataset-95302.csv 1.3 KB
Dataset License
GNU General Public License v2.0
Documentation License
GNU General Public License v2.0
Documentation

On this Picostat.com statistics page, you will find information about the Nightingale data set which pertains to Florence Nightingale's data on deaths from various causes in the Crimean War. The Nightingale data set is found in the HistData R package. You can load the Nightingale data set in R by issuing the following command at the console data("Nightingale"). This will load the data into a variable called Nightingale. If R says the Nightingale data set is not found, you can try installing the package by issuing this command install.packages("HistData") and then attempt to reload the data. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the Nightingale R data set. The size of this file is about 1,331 bytes.


Florence Nightingale's data on deaths from various causes in the Crimean War

Description

In the history of data visualization, Florence Nightingale is best remembered for her role as a social activist and her view that statistical data, presented in charts and diagrams, could be used as powerful arguments for medical reform.

After witnessing deplorable sanitary conditions in the Crimea, she wrote several influential texts (Nightingale, 1858, 1859), including polar-area graphs (sometimes called "Coxcombs" or rose diagrams), showing the number of deaths in the Crimean from battle compared to disease or preventable causes that could be reduced by better battlefield nursing care.

Her Diagram of the Causes of Mortality in the Army in the East showed that most of the British soldiers who died during the Crimean War died of sickness rather than of wounds or other causes. It also showed that the death rate was higher in the first year of the war, before a Sanitary Commissioners arrived in March 1855 to improve hygiene in the camps and hospitals.

Usage

data(Nightingale)

Format

A data frame with 24 observations on the following 10 variables.

Date

a Date, composed as as.Date(paste(Year, Month, 1, sep='-'), "%Y-%b-%d")

Month

Month of the Crimean War, an ordered factor

Year

Year of the Crimean War

Army

Estimated average monthly strength of the British army

Disease

Number of deaths from preventable or mitagable zymotic diseases

Wounds

Number of deaths directly from battle wounds

Other

Number of deaths from other causes

Disease.rate

Annual rate of deaths from preventable or mitagable zymotic diseases, per 1000

Wounds.rate

Annual rate of deaths directly from battle wounds, per 1000

Other.rate

Annual rate of deaths from other causes, per 1000

Details

For a given cause of death, D, annual rates per 1000 are calculated as 12 * 1000 * D / Army, rounded to 1 decimal.

The two panels of Nightingale's Coxcomb correspond to dates before and after March 1855

Source

The data were obtained from:

Pearson, M. and Short, I. (2007). Understanding Uncertainty: Mathematics of the Coxcomb. http://understandinguncertainty.org/node/214.

References

Nightingale, F. (1858) Notes on Matters Affecting the Health, Efficiency, and Hospital Administration of the British Army Harrison and Sons, 1858

Nightingale, F. (1859) A Contribution to the Sanitary History of the British Army during the Late War with Russia London: John W. Parker and Son.

Small, H. (1998) Florence Nightingale's statistical diagrams http://www.florence-nightingale-avenging-angel.co.uk/GraphicsPaper/Graphics.htm

Pearson, M. and Short, I. (2008) Nightingale's Rose (flash animation). http://understandinguncertainty.org/files/animations/Nightingale11/Nightingale1.html

Examples

data(Nightingale)# For some graphs, it is more convenient to reshape death rates to long format
#  keep only Date and death rates
require(reshape)
Night<- Nightingale[,c(1,8:10)]
melted <- melt(Night, "Date")
names(melted) <- c("Date", "Cause", "Deaths")
melted$Cause <- sub("\\.rate", "", melted$Cause)
melted$Regime <- ordered( rep(c(rep('Before', 12), rep('After', 12)), 3), 
                          levels=c('Before', 'After'))
Night <- melted# subsets, to facilitate separate plotting
Night1 <- subset(Night, Date < as.Date("1855-04-01"))
Night2 <- subset(Night, Date >= as.Date("1855-04-01"))# sort according to Deaths in decreasing order, so counts are not obscured [thx: Monique Graf]
Night1 <- Night1[order(Night1$Deaths, decreasing=TRUE),]
Night2 <- Night2[order(Night2$Deaths, decreasing=TRUE),]# merge the two sorted files
Night <- rbind(Night1, Night2)
require(ggplot2)
# Before plot
cxc1 <- ggplot(Night1, aes(x = factor(Date), y=Deaths, fill = Cause)) +
		# do it as a stacked bar chart first
   geom_bar(width = 1, position="identity", stat="identity", color="black") +
		# set scale so area ~ Deaths	
   scale_y_sqrt() 
		# A coxcomb plot = bar chart + polar coordinates
cxc1 + coord_polar(start=3*pi/2) + 
	ggtitle("Causes of Mortality in the Army in the East") + 
	xlab("")# After plot
cxc2 <- ggplot(Night2, aes(x = factor(Date), y=Deaths, fill = Cause)) +
   geom_bar(width = 1, position="identity", stat="identity", color="black") +
   scale_y_sqrt()
cxc2 + coord_polar(start=3*pi/2) +
	ggtitle("Causes of Mortality in the Army in the East") + 
	xlab("")## Not run: 
# do both together, with faceting
cxc <- ggplot(Night, aes(x = factor(Date), y=Deaths, fill = Cause)) +
 geom_bar(width = 1, position="identity", stat="identity", color="black") + 
 scale_y_sqrt() +
 facet_grid(. ~ Regime, scales="free", labeller=label_both)
cxc + coord_polar(start=3*pi/2) +
	ggtitle("Causes of Mortality in the Army in the East") + 
	xlab("")## End(Not run)## What if she had made a set of line graphs?# these plots are best viewed with width ~ 2 * height 
colors <- c("blue", "red", "black")
with(Nightingale, {
	plot(Date, Disease.rate, type="n", cex.lab=1.25, 
		ylab="Annual Death Rate", xlab="Date", xaxt="n",
		main="Causes of Mortality of the British Army in the East");
	# background, to separate before, after
	rect(as.Date("1854/4/1"), -10, as.Date("1855/3/1"), 
		1.02*max(Disease.rate), col=gray(.90), border="transparent");
	text( as.Date("1854/4/1"), .98*max(Disease.rate), "Before Sanitary\nCommission", pos=4);
	text( as.Date("1855/4/1"), .98*max(Disease.rate), "After Sanitary\nCommission", pos=4);
	# plot the data
	points(Date, Disease.rate, type="b", col=colors[1], lwd=3);
	points(Date, Wounds.rate, type="b", col=colors[2], lwd=2);
	points(Date, Other.rate, type="b", col=colors[3], lwd=2)
	}
)
# add custom Date axis and legend
axis.Date(1, at=seq(as.Date("1854/4/1"), as.Date("1856/3/1"), "3 months"), format="%b %Y")
legend(as.Date("1855/10/20"), 700, c("Preventable disease", "Wounds and injuries", "Other"),
	col=colors, fill=colors, title="Cause", cex=1.25)# Alternatively, show each cause of death as percent of total
Nightingale <- within(Nightingale, {
	Total <- Disease + Wounds + Other
	Disease.pct <- 100*Disease/Total
	Wounds.pct <- 100*Wounds/Total
	Other.pct <- 100*Other/Total
	})colors <- c("blue", "red", "black")
with(Nightingale, {
	plot(Date, Disease.pct, type="n",  ylim=c(0,100), cex.lab=1.25,
		ylab="Percent deaths", xlab="Date", xaxt="n",
		main="Percentage of Deaths by Cause");
	# background, to separate before, after
	rect(as.Date("1854/4/1"), -10, as.Date("1855/3/1"), 
		1.02*max(Disease.rate), col=gray(.90), border="transparent");
	text( as.Date("1854/4/1"), .98*max(Disease.pct), "Before Sanitary\nCommission", pos=4);
	text( as.Date("1855/4/1"), .98*max(Disease.pct), "After Sanitary\nCommission", pos=4);
	# plot the data
	points(Date, Disease.pct, type="b", col=colors[1], lwd=3);
	points(Date, Wounds.pct, type="b", col=colors[2], lwd=2);
	points(Date, Other.pct, type="b", col=colors[3], lwd=2)
	}
)
# add custom Date axis and legend
axis.Date(1, at=seq(as.Date("1854/4/1"), as.Date("1856/3/1"), "3 months"), format="%b %Y")
legend(as.Date("1854/8/20"), 60, c("Preventable disease", "Wounds and injuries", "Other"),
	col=colors, fill=colors, title="Cause", cex=1.25)
--

Dataset imported from https://www.r-project.org.

Picostat Manual
How To Register With a Username
  1. Go to the user registration page.
  2. Enter a username and email address into the form.
  3. Answer the ReCaptcha (this is used to prevent spam).
  4. Click Submit.
  5. Click the link that was sent to the email address you registered with.
  6. Clicking the link will open another page on Picostat where you can select a password.
  7. Click Save and enter any profile details you wish to enter.
How To Register With Google Single Sign On (SSO)
  1. Go to the user login page.
  2. Click the Google button that says "Sign in with Google". This will redirect you to a page controlled by Google.
  3. Enter your Google username and password if you are not already authenticated.
  4. Review the Picostat Terms of Use and Privacy Policy. Then submit the Google form if you accept the terms.
  5. Google will redirect you back to Picostat with your new account created and you will be logged in.
  6. Enter any profile details you wish to share.
How To Login With a Username and Password
  1. Go to the user login page.
  2. Enter your username and password that you registered with.
  3. Click "Login". You will be redirected to your user homepage authenticated.
How To Login With Google Single Sign On (SSO)
  1. Go to the user login page.
  2. Click the button that says "Sign in with Google".
  3. If you already registered with Picostat via Google SSO, you will be redirected to your user homepage authenticated.
How To Import a Dataset
  1. Create a Picostat account or login with your existing picostat account (see above).
  2. Go to the dataset import page.
  3. Select a license for the dataset. The default is "No License" but allows Picostat to host a copy of the dataset as per the privacy policy. You may wish to uncheck the "Public" option if you do not wish to share your dataset with others. R Datasets that come by downloading R have a GNU General Public License v3.0 which may also be selected from the Picostat dropdown.
  4. Enter a title for the dataset
  5. Choose a dataset input methods. Available options include:
    • Random data - this populates your dataset with random numbers between 0 and 100. You can specify the number of rows and columns for the random dataset.
    • CSV, TSV or TXT file - you will have the option upload a file within the current file size limit and also specify the header and whether or not the dataset is a contingency table. With contingency tables, the first column becomes a label for the rows. Currently with Picostat, there is limited support for contingency tables. Choose "Yes" to the Header option if the first line of the data contains titles for the rows. Also choose the Separator for the dataset. A separator is what breaks the data up. In some cases, a comma would separate data values in a row. You will also have the option to add documentation in the form keyboarded text and also uploaded documentation attachments. You can also specify a license for the documentation.
    • Copy and Paste. This selection contains many of the same fields as importing a file with an additional textarea to copy and paste data to.
    • Empty dataset. Start with a blank dataset and manually add data with the Picostat dataset editor.
    • Excel file - Choose this option if you would like to convert your Excel spreadsheet to a Picostat dataset. With this selection, you will have the option to specify whether to use the first row in the Excel file as column names. If you would like to choose a specific sheet to use, you can also specify with entering its name in the text input.
    • sas7bdat file - SAS is a powerful statistical software package that has its own proprietary file format. Choose this option if you are importing a SAS file.
    • SPSS sav file - SPSS is a statistical package owned by IBM. You can import SPSS files by choosing this option.
  6. Choose whether or not the dataset contains a header. Some of the dataset input methods allow you to specify whether or not a Header exists on the file. Sometimes dataset files contain a Header as the first row which names the columns. If you choose "Yes" to this, the first row in the dataset will become column headers.
  7. You can also add documentation and specify a documentation license. This can be used to help explain your dataset to those unfamiliar with it.
  8. Choose whether or not to upload an supporting attachments.
  9. Pass the captcha. To prevent spam submissions, Picostat has a captcha which is used to prevent automated submissions by bots.
  10. Choose a privacy setting for the dataset. You can also specify whether or not the dataset is Public. If you uncheck this setting, only you and the Picostat administrator will be able to view the dataset.
  11. Submit the form. Once the form is validated, you will be redirected to the dataset homepage where you can choose to edit or perform statistical operations on the dataset.
How To Perform Statistical Analysis with Picostat
  1. Go to any dataset homepage. You can get a full list at the dashboard.
  2. Near the top of the page there will be two drop downs. One for analysis and one for education. Here we will choose Analyis. Choose from one of the following:
    • Numerical Summaries - Here you can get the:
      1. Arithmetic mean
      2. Median
      3. Quartiles
      4. Minimum and Maximum
      5. Stem-and-leaf plot
      6. Standard deviation and Variance
      7. IQR
      8. Cumulative frequencies
    • Plot - a plot of two columns on the cartesian coordinate system
    • Boxplot - a Boxplot (box-and-whisker plot) of a column.
    • Correlation Coefficient - Compute the correlation coefficient between two columns.
    • Cumulative Frequency Histogram - Display a cumulative frequency histogram
    • Dotplot
    • Hollow Histogram - Plot two columns on the same histogram with a different color for each column.
    • Pie Chart
    • Regression - Perform a simple linear regression and compute the p-value and regression line. Also plots the data with the regression line.
    • Stem and Leaf Plots - Plot a one or two-sided stem-and-leaf plot from one or two columns respectively.
    • Visual Summaries - plots the following:
      1. Frequency Histogram
      2. Relative Frequency Histogram
      3. Cumulative Frequency Histogram
      4. Boxplot (Box-and-whisker plot)
      5. Dotplot
  3. PDF - Check this box if you want to download a PDF of the output from the statistical analysis application.
  4. HTML - Check this box if you want a link to the HTML page created with the application.
  5. R File - Check this box if you want a link to download the R commands used to generate output from this statistical application. You should be able to copy the commands verbatim into R Studio or R to recreate the analysis.
How To Use Educational Applications with Picostat
  1. Go to any dataset homepage. You can get a full list at the dashboard.
  2. Near the top of the page there will be two drop downs. One for analysis and one for education. Here we will choose Education. Choose from one of the following:
    • How To Create a Barplot - This will show you how to create a bar chart after selecting a column with the mouse.
    • How To Create a Stacked Barplot - This application will show you how to create a stacked bar plot from a column vector.
    • How To Create a Pie Chart - This application will show you how to create a pie chart from a column of data
    • How To Compute the Mean - This application will show you how to compute the mean from a column vector
    • How To Create a Plot - This app will show you how to plot two columns in the cartesian coordinate system.
    • How To Compute the Media - This statisistical app will show you how to compute the median from a column vector.
  3. PDF - Check this box if you want to download a PDF of the output from the education application.
  4. HTML - Check this box if you want a link to the HTML page created with the application.
Recent Queries For This Dataset

No queries made on this dataset yet.

Title Authored on Content type
R Dataset / Package vcd / JointSports March 9, 2018 - 1:06 PM Dataset
R Dataset / Package mosaicData / Riders March 9, 2018 - 1:06 PM Dataset
R Dataset / Package MASS / epil March 9, 2018 - 1:06 PM Dataset
R Dataset / Package HSAUR / schizophrenia2 March 9, 2018 - 1:06 PM Dataset
stent365 May 7, 2017 - 12:27 AM Dataset