R Dataset / Package psych / Holzinger.9

How To Create a Barplot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Stacked Barplot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Pie Chart

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Compute the Mean

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How To Create a Plot

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

How to Compute the Median

Webform
The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Boxplot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Correlation Coefficient

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Cumulative Frequency Histogram

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Dotplot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Hollow Histogram

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Numerical Summaries

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Pie Chart

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Plot

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Regression

Stem and Leaf Plots

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Visual Summaries

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Embed
<iframe src="https://embed.picostat.com/r-dataset-package-psych-holzinger9.html" frameBorder="0" width="100%" height="307px" />
Attachment Size
dataset-99627.csv 762 bytes
Dataset License
GNU General Public License v2.0
Documentation License
GNU General Public License v2.0
Documentation

On this Picostat.com statistics page, you will find information about the Holzinger.9 data set which pertains to Seven data sets showing a bifactor solution.. The Holzinger.9 data set is found in the psych R package. You can load the Holzinger.9 data set in R by issuing the following command at the console data("Holzinger.9"). This will load the data into a variable called Holzinger.9. If R says the Holzinger.9 data set is not found, you can try installing the package by issuing this command install.packages("psych") and then attempt to reload the data. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the Holzinger.9 R data set. The size of this file is about 762 bytes.


Seven data sets showing a bifactor solution.

Description

Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger data sets are original 14 * 14 matrix from their paper as well as a 9 *9 matrix used as an example by Joreskog. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests.

Usage

data(Thurstone)
data(Thurstone.33)
data(Holzinger)
data(Holzinger.9)
data(Bechtoldt)
data(Bechtoldt.1)
data(Bechtoldt.2)
data(Reise)

Details

Holzinger and Swineford (1937) introduced the bifactor model (one general factor and several group factors) for mental abilities. This is a nice demonstration data set of a hierarchical factor structure that can be analyzed using the omega function or using sem. The bifactor model is typically used in measures of cognitive ability.

There are several ways to analyze such data. One is to use the omega function to do a hierarchical factoring using the Schmid-Leiman transformation. This can then be done as an exploratory and then as a confirmatory model using omegaSem. Another way is to do a regular factor analysis and use either a bifactor or biquartimin rotation. These latter two functions implement the Jennrich and Bentler (2011) bifactor and biquartimin transformations. The bifactor rotation suffers from the problem of local minima (Mansolf and Reise, 2016) and thus a mixture of exploratory and confirmatory analysis might be preferred.

The 14 variables are ordered to reflect 3 spatial tests, 3 mental speed tests, 4 motor speed tests, and 4 verbal tests. The sample size is 355.

Another data set from Holzinger (Holzinger.9) represents 9 cognitive abilities (Holzinger, 1939) and is used as an example by Karl Joreskog (2003) for factor analysis by the MINRES algorithm and also appears in the LISREL manual as example NPV.KM.

Another classic data set is the 9 variable Thurstone problem which is discussed in detail by R. P. McDonald (1985, 1999) and and is used as example in the sem package as well as in the PROC CALIS manual for SAS. These nine tests were grouped by Thurstone and Thurstone, 1941 (based on other data) into three factors: Verbal Comprehension, Word Fluency, and Reasoning. The original data came from Thurstone and Thurstone (1941) but were reanalyzed by Bechthold (1961) who broke the data set into two. McDonald, in turn, selected these nine variables from the larger set of 17 found in Bechtoldt.2. The sample size is 213.

Another set of 9 cognitive variables attributed to Thurstone (1933) is the data set of 4,175 students reported by Professor Brigham of Princeton to the College Entrance Examination Board. This set does not show a clear bifactor solution but is included as a demonstration of the differences between a maximimum likelihood factor analysis solution versus a principal axis factor solution.

More recent applications of the bifactor model are to the measurement of psychological status. The Reise data set is a correlation matrix based upon >35,000 observations to the Consumer Assessment of Health Care Provideers and Systems survey instrument. Reise, Morizot, and Hays (2007) describe a bifactor solution based upon 1,000 cases.

The five factors from Reise et al. reflect Getting care quickly (1-3), Doctor communicates well (4-7), Courteous and helpful staff (8,9), Getting needed care (10-13), and Health plan customer service (14-16).

The two Bechtoldt data sets are two samples from Thurstone and Thurstone (1941). They include 17 variables, 9 of which were used by McDonald to form the Thurstone data set. The sample sizes are 212 and 213 respectively. The six proposed factors reflect memory, verbal, words, space, number and reasoning with three markers for all expect the rote memory factor. 9 variables from this set appear in the Thurstone data set.

Two more data sets with similar structures are found in the Harman data set.

  • Bechtoldt.1: 17 x 17 correlation matrix of ability tests, N = 212.

  • Bechtoldt.2: 17 x 17 correlation matrix of ability tests, N = 213.

  • Holzinger: 14 x 14 correlation matrix of ability tests, N = 355

  • Holzinger.9: 9 x 9 correlation matrix of ability tests, N = 145

  • Reise: 16 x 16 correlation matrix of health satisfaction items. N = 35,000

  • Thurstone: 9 x 9 correlation matrix of ability tests, N = 213

  • Thurstone.33: Another 9 x 9 correlation matrix of ability items, N=4175

Source

Holzinger: Holzinger and Swineford (1937)
Reise: Steve Reise (personal communication)
sem help page (for Thurstone)

References

Bechtoldt, Harold, (1961). An empirical study of the factor analysis stability hypothesis. Psychometrika, 26, 405-432.

Holzinger, Karl and Swineford, Frances (1937) The Bi-factor method. Psychometrika, 2, 41-54

Holzinger, K., & Swineford, F. (1939). A study in factor analysis: The stability of a bifactor solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.

McDonald, Roderick P. (1999) Test theory: A unified treatment. L. Erlbaum Associates. Mahwah, N.J.

Mansolf, Maxwell and Reise, Steven P. (2016) Exploratory Bifactor Analysis: The Schmid-Leiman Orthogonalization and Jennrich-Bentler Analytic Rotations, Multivariate Behavioral Research, 51:5, 698-717, DOI: 10.1080/00273171.2016.1215898

Reise, Steven and Morizot, Julien and Hays, Ron (2007) The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research. 16, 19-31.

Thurstone, Louis Leon (1933) The theory of multiple factors. Edwards Brothers, Inc. Ann Arbor

Thurstone, Louis Leon and Thurstone, Thelma (Gwinn). (1941) Factorial studies of intelligence. The University of Chicago Press. Chicago, Il.

Examples

if(!require(GPArotation)) {message("I am sorry, to run omega requires GPArotation") 
        } else {
#holz <- omega(Holzinger,4, title = "14 ability tests from Holzinger-Swineford")
#bf <- omega(Reise,5,title="16 health items from Reise") 
#omega(Reise,5,labels=colnames(Reise),title="16 health items from Reise")
thur.om <- omega(Thurstone,title="9 variables from Thurstone") #compare with
thur.bf   <- fa(Thurstone,3,rotate="biquartimin")
factor.congruence(thur.om,thur.bf)
}
--

Dataset imported from https://www.r-project.org.

Picostat Manual
How To Register With a Username
  1. Go to the user registration page.
  2. Enter a username and email address into the form.
  3. Answer the ReCaptcha (this is used to prevent spam).
  4. Click Submit.
  5. Click the link that was sent to the email address you registered with.
  6. Clicking the link will open another page on Picostat where you can select a password.
  7. Click Save and enter any profile details you wish to enter.
How To Register With Google Single Sign On (SSO)
  1. Go to the user login page.
  2. Click the Google button that says "Sign in with Google". This will redirect you to a page controlled by Google.
  3. Enter your Google username and password if you are not already authenticated.
  4. Review the Picostat Terms of Use and Privacy Policy. Then submit the Google form if you accept the terms.
  5. Google will redirect you back to Picostat with your new account created and you will be logged in.
  6. Enter any profile details you wish to share.
How To Login With a Username and Password
  1. Go to the user login page.
  2. Enter your username and password that you registered with.
  3. Click "Login". You will be redirected to your user homepage authenticated.
How To Login With Google Single Sign On (SSO)
  1. Go to the user login page.
  2. Click the button that says "Sign in with Google".
  3. If you already registered with Picostat via Google SSO, you will be redirected to your user homepage authenticated.
How To Import a Dataset
  1. Create a Picostat account or login with your existing picostat account (see above).
  2. Go to the dataset import page.
  3. Select a license for the dataset. The default is "No License" but allows Picostat to host a copy of the dataset as per the privacy policy. You may wish to uncheck the "Public" option if you do not wish to share your dataset with others. R Datasets that come by downloading R have a GNU General Public License v3.0 which may also be selected from the Picostat dropdown.
  4. Enter a title for the dataset
  5. Choose a dataset input methods. Available options include:
    • Random data - this populates your dataset with random numbers between 0 and 100. You can specify the number of rows and columns for the random dataset.
    • CSV, TSV or TXT file - you will have the option upload a file within the current file size limit and also specify the header and whether or not the dataset is a contingency table. With contingency tables, the first column becomes a label for the rows. Currently with Picostat, there is limited support for contingency tables. Choose "Yes" to the Header option if the first line of the data contains titles for the rows. Also choose the Separator for the dataset. A separator is what breaks the data up. In some cases, a comma would separate data values in a row. You will also have the option to add documentation in the form keyboarded text and also uploaded documentation attachments. You can also specify a license for the documentation.
    • Copy and Paste. This selection contains many of the same fields as importing a file with an additional textarea to copy and paste data to.
    • Empty dataset. Start with a blank dataset and manually add data with the Picostat dataset editor.
    • Excel file - Choose this option if you would like to convert your Excel spreadsheet to a Picostat dataset. With this selection, you will have the option to specify whether to use the first row in the Excel file as column names. If you would like to choose a specific sheet to use, you can also specify with entering its name in the text input.
    • sas7bdat file - SAS is a powerful statistical software package that has its own proprietary file format. Choose this option if you are importing a SAS file.
    • SPSS sav file - SPSS is a statistical package owned by IBM. You can import SPSS files by choosing this option.
  6. Choose whether or not the dataset contains a header. Some of the dataset input methods allow you to specify whether or not a Header exists on the file. Sometimes dataset files contain a Header as the first row which names the columns. If you choose "Yes" to this, the first row in the dataset will become column headers.
  7. You can also add documentation and specify a documentation license. This can be used to help explain your dataset to those unfamiliar with it.
  8. Choose whether or not to upload an supporting attachments.
  9. Pass the captcha. To prevent spam submissions, Picostat has a captcha which is used to prevent automated submissions by bots.
  10. Choose a privacy setting for the dataset. You can also specify whether or not the dataset is Public. If you uncheck this setting, only you and the Picostat administrator will be able to view the dataset.
  11. Submit the form. Once the form is validated, you will be redirected to the dataset homepage where you can choose to edit or perform statistical operations on the dataset.
How To Perform Statistical Analysis with Picostat
  1. Go to any dataset homepage. You can get a full list at the dashboard.
  2. Near the top of the page there will be two drop downs. One for analysis and one for education. Here we will choose Analyis. Choose from one of the following:
    • Numerical Summaries - Here you can get the:
      1. Arithmetic mean
      2. Median
      3. Quartiles
      4. Minimum and Maximum
      5. Stem-and-leaf plot
      6. Standard deviation and Variance
      7. IQR
      8. Cumulative frequencies
    • Plot - a plot of two columns on the cartesian coordinate system
    • Boxplot - a Boxplot (box-and-whisker plot) of a column.
    • Correlation Coefficient - Compute the correlation coefficient between two columns.
    • Cumulative Frequency Histogram - Display a cumulative frequency histogram
    • Dotplot
    • Hollow Histogram - Plot two columns on the same histogram with a different color for each column.
    • Pie Chart
    • Regression - Perform a simple linear regression and compute the p-value and regression line. Also plots the data with the regression line.
    • Stem and Leaf Plots - Plot a one or two-sided stem-and-leaf plot from one or two columns respectively.
    • Visual Summaries - plots the following:
      1. Frequency Histogram
      2. Relative Frequency Histogram
      3. Cumulative Frequency Histogram
      4. Boxplot (Box-and-whisker plot)
      5. Dotplot
  3. PDF - Check this box if you want to download a PDF of the output from the statistical analysis application.
  4. HTML - Check this box if you want a link to the HTML page created with the application.
  5. R File - Check this box if you want a link to download the R commands used to generate output from this statistical application. You should be able to copy the commands verbatim into R Studio or R to recreate the analysis.
How To Use Educational Applications with Picostat
  1. Go to any dataset homepage. You can get a full list at the dashboard.
  2. Near the top of the page there will be two drop downs. One for analysis and one for education. Here we will choose Education. Choose from one of the following:
    • How To Create a Barplot - This will show you how to create a bar chart after selecting a column with the mouse.
    • How To Create a Stacked Barplot - This application will show you how to create a stacked bar plot from a column vector.
    • How To Create a Pie Chart - This application will show you how to create a pie chart from a column of data
    • How To Compute the Mean - This application will show you how to compute the mean from a column vector
    • How To Create a Plot - This app will show you how to plot two columns in the cartesian coordinate system.
    • How To Compute the Media - This statisistical app will show you how to compute the median from a column vector.
  3. PDF - Check this box if you want to download a PDF of the output from the education application.
  4. HTML - Check this box if you want a link to the HTML page created with the application.
Recent Queries For This Dataset

No queries made on this dataset yet.

Title Authored on Content type
R Dataset / Package vcd / JointSports March 9, 2018 - 1:06 PM Dataset
R Dataset / Package mosaicData / Riders March 9, 2018 - 1:06 PM Dataset
R Dataset / Package MASS / epil March 9, 2018 - 1:06 PM Dataset
R Dataset / Package HSAUR / schizophrenia2 March 9, 2018 - 1:06 PM Dataset
stent365 May 7, 2017 - 12:27 AM Dataset